Problem 1.44

Verify by direct substitution that the function $\phi(t)=A \sin (\omega t)+B \cos (\omega t)$ of (1.56) is a solution of the second-order differential equation (1.55), $\ddot{\phi}=-\omega^{2} \phi$. (Since this solution involves two arbitrary constants - the coefficients of the sine and cosine functions - it is in fact the general solution.)

Solution

Plug the given formula for $\phi(t)$ into the differential equation.

$$
\begin{aligned}
& \ddot{\phi} \stackrel{?}{=}-\omega^{2} \phi \\
& \frac{d^{2}}{d t^{2}}[A \sin (\omega t)+B \cos (\omega t)] \stackrel{?}{=}-\omega^{2}[A \sin (\omega t)+B \cos (\omega t)] \\
& \frac{d}{d t}[A \omega \cos (\omega t)-B \omega \sin (\omega t)] \stackrel{?}{=}-\omega^{2}[A \sin (\omega t)+B \cos (\omega t)] \\
& {\left[-A \omega^{2} \sin (\omega t)-B \omega^{2} \cos (\omega t)\right] } \stackrel{?}{=}-\omega^{2}[A \sin (\omega t)+B \cos (\omega t)] \\
&-\omega^{2}[A \sin (\omega t)+B \cos (\omega t)]=-\omega^{2}[A \sin (\omega t)+B \cos (\omega t)]
\end{aligned}
$$

This is a true statement, so $\phi(t)=A \sin (\omega t)+B \cos (\omega t)$ is indeed a solution to $\ddot{\phi}=-\omega^{2} \phi$.

